In the first study of its kind, researchers have discovered that in autistic individuals, connections between brain cells may be deficient within single regions, and not just between regions, as was previously believed.
Tony Wilson, Ph.D., lead researcher and assistant professor of neurology at Wake Forest University School of Medicine, said he hopes this study will eventually lead to earlier diagnosis and more targeted medications for autism.
Using magnetoencephalography (MEG) brain imaging technology to measure brain electrical activity, the researchers administered a test called the 40 hertz (cycles per second) auditory steady-state response test. The test measures electromagnetic wave cycles and indicates brain cell discharges at the 40 hertz frequency.
"This test measures the brain's capacity to mimic what it's hearing। A healthy brain's cells will fire back at 40 hertz," said Wilson. "We chose this test because it is a robust metric of how well individual circuits are functioning."
Tony Wilson, Ph.D., lead researcher and assistant professor of neurology at Wake Forest University School of Medicine, said he hopes this study will eventually lead to earlier diagnosis and more targeted medications for autism.
Using magnetoencephalography (MEG) brain imaging technology to measure brain electrical activity, the researchers administered a test called the 40 hertz (cycles per second) auditory steady-state response test. The test measures electromagnetic wave cycles and indicates brain cell discharges at the 40 hertz frequency.
"This test measures the brain's capacity to mimic what it's hearing। A healthy brain's cells will fire back at 40 hertz," said Wilson. "We chose this test because it is a robust metric of how well individual circuits are functioning."
Read more...click here
permalink Technorati
Philippine Nursing
http://Philippinenursing.blogspot.com
0 comments:
Post a Comment